
Lamancha - Ultimate Quip
Introduction

MISSION & STRATEGY

The ultimate mission of Lamancha is to make correctly implementing board games easy, quick, and ultimately cheaper
from an engineering point of view. The strategy for achieving this is to build a generic client for devices (similar to a
web browser) and then move all game logic to a single threaded server where “compute is durable” and easy enough
such that high school hackers can understand the model.

VALUE PROPOSITION

The initial value proposition of this work is to achieve the mission for board games, but this is simply a mechanism to
amuse the author (me, Jeff). At the core of this is a severe rethinking of how we build software in an interconnected
world. We are seeing the cloud be a revolution for many areas, and the cloud is a powerful thing. However, we must
ask what will be next? Will the cloud continue as it, or is there something that could severely disrupt it? The world is
getting more complicated as to where data lives and who owns that data, so how can products get built quickly
without regulatory concern?

The abstract claim is that this work will enable a new way to build products that connect people and help people live
their lives in a predictable way. Software can become secure and private by default. Software should be as easy to build
and operate as a spreadsheet. 

This industry is in its infancy, and the real value of this arc is to get a glimpse of the future. Now, the author may be a
crackpot, and the inverse value of this work is that the engineering discipline to operate this vision is a huge unknown.
It may be too myopic in scope and toy-like, but many great things start as a toy.

REQUIREMENTS TO SUCCEED AT THE PRIMARY MISSION

The rendering must be exceptionally efficient since board games can last hours. We expect that an average
person with 50% battery available should be able to play a six hour game with a mature battery.

Animation and expensive visual effects must be dependent on time and cancelled. That is, if an animation is
desired and implemented then system configuration can override that animation and simply snap to the end
state or skip frames to reduce battery.

●

●

NEXT STEPS

This document will outline the high level view of the entire stack, the components found within the stack, a
specification for a programming language, and then conclude with examples that illustrate how the stack solves board
games.

High Level Technical View
ARCHITECTURE AT 50,000 FOOT VIEW

This design is “full stack” as it encompasses everything
from the device’s screen down to the server side language
used to write the entire product. The image to the right
illustrates the various components and their relationships
between themselves. First, we will illustrate the broad



stroke roles of each component at a high level and how
these components relate to each. Second, each
component will have a section to call out important
design details. Finally, we will conclude with examples of
how all these components tie together to enable board
games.

Raster Main is responsible for drawing on the
device’s display. This produces the visual results of
the product. At the same time, drawing will drive all
other processes within the system. Raster Main is
responsible for the game loop which will be non-
traditional.

Scene Tree is the classical “document model” that
defines what the scene is composed of. For
instance, it will contain the various items to draw
and their positions. It also has audio ques
embedded in it.

The Audio Scheduler is driven by the rendering
process such that the visual and audio effects are in
alignment. Raster Main has the responsibility of
walking the Scene Tree to update the display, and
this walking process will schedule audio clips to
play via the Audio Scheduler.

Touch Interactions are the primary way on mobile
devices for the user to interact with the product.
These Touch Interactions will interface with
the Scene Tree to convert the device’s Touch Down,
Touch Move, and Touch Up events into actualized
events like “Button 42 was touched which signals a
roll of the dice”. The Raster Main component is also
responsible for indexing active Scene Tree elements
such that the touch coordinates can efficiently be
converted into product level events.

●

●

●

●

At this point, the Render Main, Scene Tree, Audio Scheduler, and Touch Interactions feel similar to how a browser
works without the JavaScript ecosystem. That is, they take a document, draw it on the screen, index it, and then
provides mechanisms to convert finger interactions into useful behaviors (like change which document to render). The
big question is how do we achieve interactivity with this system. This is where we introduce the Reactive Layout &
Compute Engine.

The most direct analogy of Reactive Layout & Compute Engine is an Excel spreadsheet. Properties of the Scene Tree,
like the coordinates of a image, are not always static values, but instead they may be expressions. These expressions
resolve against both the Mega Tree and the Virtual Asset Store. The Mega Tree is the application state for the entire
product. The Mega Tree is the core storage and where all state is kept. The Virtual Asset Store is effectively a blob store
for images, audio, videos, fonts that can be referenced by the Scene Tree. As an additional bonus, video streams
should be hooked up to the Virtual Asset Store.

In a way, the Reactive Layout & Compute Engine is a pure stateless function for converting the Mega Tree with assets
pulled from the Virtual Asset Store into an image and audio events. Interactivity and animation are then achieved via



changes to the Mega Tree and Virtual Asset Store. Changes to the Mega Tree occur in four ways:

Touch Interactions fires an event that mutates the Mega Tree. It is worth noting that these mutations are limited
in scope and will not be Turing complete. Later in the document, we will call out the balancing act of what the
client is able to do locally without a server (see The Balancing Act; Dumb But Not Too Dumb Client)

Render Main detected an audio cue based on data in the Mega Tree and writes back that the audio is playing.
The core reason for this write back to the tree is to signal that the audio is playing. Initially, this will serve as a way
to have a falling edge to prevent audio from looping.

Temporal changes (or convergent) behaviors to animate scenes. Time is an input of the Reactive Layout &
Compute Engine such that animation can be achieved by expressions. The goal here is invent a new
computational form of relativity which illustrates why there can not be a universal clock.

Changes (i.e. tree diffs) arrive from the Client. This is a dominant way for updates to arrive as they will be coming
over the network from a server. There is much to discuss with the Client, but a key idea is that tree will
receive tree updates and then update the display.

1.

2.

3.

4.

Similarly, changes to the Virtual Asset Store depend entirely on the Client as well. At this point, we must contend with
the role of the Client. The role of the Client is four fold:

Learn of Mega Tree updates from the server via the network. The server will emit a series of tree changes over
time, and the Client will learn of them and dispatch them to the Mega Tree. Changes to the Mega Tree will then
trigger rendering and audio plays.

Learn of new or updated assets for the Virtual Asset Store. These updates also arrive from the server via the
network, and it is entirely possible for an ad-hoc video protocol to be born. As part of this, various asset types will
also have a set of mutations which the server can apply to locally update an asset. For instance, an image asset
could be updated by drawing a smaller image within an existing asset.

Durably propagate events generated from Touch Interactions interfacing with the Scene Tree. This is the primary
method of the server learning of interactions, and these must be queued until the server acknowledges them.

Collapse and gossip local Mega Tree changes to the server. This is a secondary form of server learning of state
changes, but only limited in-flight changes are ever sent to the server which will impose a latency penalty during
high state change. However, while a change is waiting to propagate to server, changes can collapse into one and
overwrite changes. This means that this stream of data can not be used for triggering actions. Instead, it can be
used for optimization or analytics.

1.

2.

3.

4.

The Client will connect to the first server which has a variety of roles and thus has the opaque name of Coordinator.
This is where things go into the madness section as the server stack uses chain replication. However, unlike chain
replication as proposed in “Chain Replication for Supporting High Throughput and Availability”
( http://www.cs.cornell.edu/home/rvr/papers/OSDI04.pdf ); this chain replication will be bi-
directional. The Coordinator server has five jobs.

Identify the replicas that will define the chain (i.e. replica host A, B, and C). This step is effectively to identity the
chain of servers via some shard placement service which must provide a consistent and partition tolerant view of
the data. 

Connect to the first replica, Server Chain Link Replica I, in the chain.

Proxy all events from Client to first replica in the chain

All state mutations into a special type of event. State mutations within the infrastructure do not collapse
due to the relatively higher throughput between servers and the waste of trying to batch overtime.

Store a copy of the mega tree and keep it fresh.

The first connect to the first replica will download the entire document

Once connected, updates will come from the first replica

Evaluate privacy rules within the mega tree and filter the document and updates to the client

1.

2.

3.
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4.

b.

c.

5.

https://quip.com/k7pzAZGaqhy9#OIFACAEXvsR
http://www.cs.cornell.edu/home/rvr/papers/OSDI04.pdf


Privacy rules are embedded within the document so the document is a closed data source.

Example: how to prevent clients from hacking their device to see other player’s private state.

d.

e.

Server Chain Link Replica I and Server Chain Link Replica II have relatively simple jobs during normal operations.

Server Chain Link Replica I will receive events from Coordinator and then store them and pass them to Server Chain
Link Replica II. Server Chain Link Replica II will then produce data in the form of compete trees or updates, and Server
Chain Link Replica I must store them and pass it along to the Coordinator. Server Chain Link Replica I is then a simply
proxy that captures everything. Server Chain Link Replica II does exactly the same thing as Server Chain Link Replica I,
and the primary reason for this durability. Server Chain Link Replica II then bridges from Server Chain Link Replica
I to Server Chain Link Replica III which has a new role of Compute. This is where things get interesting, and we can
make the observation “Hey, all these replicas are just storing data!”

Compute has one job, and that job is to convert events into state changes. State changes then come annotated with
event deletions such that updates are atomic. This means that the Compute side must be entirely deterministic to
handle a variety of failure modes, but it also means that Compute can move around on failure. The challenge of
Compute then is an expression problem as this model potentially creates a variety of issues that can be mitigated by
either discipline or a new programming language. The new programming language, Adama, will be specified to
illustrate the discipline requirements.

SUMMARY OF THE SUMMARY; 100,000 FOOT VIEW

Components
Component: Scene Tree, Part I - Drawing

Reminder, the Scene Tree is responsible for the representation of what is visually and auditory being presented to the
user via the device. For clarity, the Scene Tree in this document will represent 2D image construction and stereo audio
mixing.

REPRESENTING THE TREE

The default representation of the Scene Tree begins in XML, and this is because XML makes representing hierarchical
documents easy and straightforward (a bit ugly, but that is OK). Unfortunately, XML tends to be difficult to work with
across platforms and is not efficient for devices to parse. Therefore, we will leverage XML for the very human
developers and then introduce two alternative isomorphic representations.

The first alternative is JSON, and this representation is to make it easier for developers to transform and work with
scenes in other tools and languages. JSON is easy to work with and reasonably efficient when compared to XML, and
this opens up the potential for an ecosystem to develop to play with Scene Trees.

The second alternative is byte code, and this representation is for the end client to execute and render. An idealized
implementation of the byte code would be WebAssembly because inventing a byte code format for this would be
insane. This fundamentally means the translation to byte code requires converting the XML to a programming
language, like rust, and then compiling that language to WebAssembly.

Since we expect humans to understand the Scene Tree via XML, the following sections will explain the basics using XML
trees as examples and build up the elements from simple to complex. As elements are introduced, various design
games will be laid out like “how does layout work” since this will illuminate elements.

XML: KICKING IT OFF WITH A FEW PRIMITIVE ELEMENTS AND THE KISS PRINCIPLE



Before we start laying out the foundation of the Scene Tree, we first layout the design aspiration that every element
should be “simple”, and here we define simple as being having one job to perform. For instance, let’s consider the
FillColor element.

<FillColor Color="red" />

This element has one job, and that job is to paint the screen’s black surface with red. Now, there is more to life than
painting black screens red. For instance, how would I shape that fill? This is where we introduce the Scope element.

<Scope Width="64" Height="64" Unit="px"><FillColor Color="red" /></Scope>

The Scope element has one job, and that job is to scope the size of the children to 64x64 pixels. This document will
simply have a red box with dimensions of 64x64 pixels sitting in the top left. (TODO: picture)

The width and height attributes define the dimensions of the element, and the unit attribute defines the unit for those
measure. As a further example of keeping things simple, we expect all attributes to be basic atomic types like numbers,
strings, a massive color enumeration that every system in the universe understands, enumeration values, and a few
more. At no point do we expect developers to know “micro-languages” for the XML like “64px” (well, beyond the
massive color enumeration encoding).

With the ability to size children, we also need the ability to move children elements and this is where we must
introduce the Translate element.

<Translate X="42" Y="13" Unit="px"> 

  <Scope Width="64" Height="64" Unit="px"> 

    <FillColor Color="red" /> 

  </Scope> 

</Translate>

The Translate element has one job, and that is translate children by the specified measure. With this document, there is
a red box with dimensions 64x64 pixels located at the coordinate (42, 13) measured in pixels from the top left corner.
(TODO: picture).

So far, we have introduced three elements: FillColor, Scope, and Translate but there are two games being played. The
first game is “how are elements sized?”, and the second is “how are elements positioned?”

GAME: INHERITANCE BASED SIZING

An important design question is “how do we size elements?”. The size of an element is actually an input from the
containing parent’s elements. At the root of the document, the size the parent tells children is the device’s window. For
this document, all devices will have a bounds of 600 pixels horizontally by 800 pixels vertically. Children will then
accept the parent’s size as a suggestion and then can use it. Consider this document:

<FillColor Color="blue" />

The size of the FillColor element will be (600, 800) as this what the device’s size is. Now, consider this document:

<Scope Width="75" Height="50" Unit="percent"> 

  <FillColor Color="blue" /> 

</Scope>



The Scope element will receive the bounds (600, 800) from the device and then it will do its one and only job of
converting that to (600*75/100, 800*50/100) = (450, 400) pixels for children. FillColor will then get (450, 400) and
use that for the size and ultimately what to render.

This system is a stark contrast from other systems where size comes by sizing the children elements and up, and we
want to make clear that the mode of sizing is available as well but will be detailed later on the the document. A core
reason for this model is that it is exceptionally efficient in terms of execution and aligns with the implicit goal of a
battery-efficient.

GAME: THE MATRIX STRACK

After sizing elements, we now must ask “how are elements positioned?” This question is answered with matrices! OK,
we have the Translate element like:

<Translate X="42" Y="13" Unit="px"> 

  <FillColor Color="green" /> 

</Translate>

Behind the scenes, there is a matrix stack. The matrix stack initially has an identity 3x3 matrix pushed on its top, and
the above translation corresponds to the the 3x3 homogeneous matrix:

[1, 0, 42, 

 0, 1, 13, 

 0, 0, 1]

which is represented as a 3x2 matrix where the bottom row is fixed at 0, 0, 1 as in:

[1, 0, 42, 

 0, 1, 13]

This matrix is multiplied by the head of stack (i.e. the identity matrix) and then the result is pushed on top of the stack
for other matrix operations. The stack is then used by children of Translate, and once the children are processed, the
result is then popped off the stack.

This matrix allows many affine transformations to be encoded like rotation, scaling, reflection, shearing, and
orthogonal projection.

XML: EXPANDING THE MATRIX STACK

Since the matrix stack is introduced, now let’s introduce the Scale and Rotate elements which also manipulate the
matrix stack. Scale will simply enlarge or shrink or the children in question, and has two attributes.

<Scale X="2" Y="2"> 

  <Scope Width="32" Height="32" Unit="px"> 

    <FillColor Color="orange" /> 

  </Scope> 

</Rotate>

This Scale element will double the size of the children, and this has side effect of turning the specified 32x32 orange
box into a realized 64x64 orange box. Similarly, an X and Y value of 0.5 would halve the orange box’s size. Fortunately,
the Scale element object is simple. Rotate, however, is intuitively simple but has a rough edge; Rotate will rotate the
children by the given angle in the given angle measurement. For instance,



<Rotate Angle="45" Unit="degree"> 

  <Scope Width="32" Height="32" Unit="px"> 

    <FillColor Color="purple" /> 

  </Scope> 

</Rotate>

will rotate the purple box by 45 degrees. Rotate is an interesting case study because there is now a good question of
what is the size of the rotated children? The size of the children is 32x32 prior to rotation, and the rotation will
naturally increase the bounds of that box. So, what do we do?

First, we have to recognize that this problem is related to a future section of automatic layout and how elements can
be position. For instance, if elements are marshaled left to right, then contending with size is important such that
elements don’t overlap if desired. The tricky element at play here is that there is implicit hidden state; the size of the
children is hidden and may not be available within this document. The language should provide some mechanism to
aide in making that hidden state useful and provide a few options.

There is a tiny explosion of complexity here, and this is why we value keeping things simple to contain this explosions
as they happen. We have several options. First, we could simply ignore the effect of rotation and Keep the children’s
bound as-is. Or, we could Expand the size such and implicitly induce a Translation to preserve a box model and fit the
rotated item inside the box. Alternatively, we could Shrink the parent’s bound and induce a Scale and Translation such
that the children’s rotation will fit within the provided box. We will call this decision as a SizeEffect which is
enumeration with values Keep, Shrink, and Expand and then add a SizeEffect attribute to the Rotate element. Consider
this document:

<Rotate Angle="45" Unit="degree" SizeEffect="expand"> 

  <Scope Width="32" Height="32" Unit="px"> 

    <FillColor Color="purple" /> 

  </Scope> 

</Rotate>

The size of the Rotate element is around ~44x44 (TODO: sort this out this math) pixels, and the purple box will be
centered within that 44x44 box such that the the corners of the rotated box touch the edges. It is worth noting that
none of these options are battle-tested with designers, and Keep will most likely be the primary which is what browsers
do with CSS.

Additionally, we must contend that hidden state of the children size may be useful to affect which point the element is
rotated around. For instance, should the box rotate around the children’s like how CSS rotate() works? or should the
rotation happen on the left corner of the children? This is where we introduce the OriginX and OriginY attributes which
default to 0.5 to represent the center and maintain a bit of semantic comparability with browsers behavior with CSS
rotate(). For instance, consider the document.

<Rotate Angle="180" Unit="degree" OriginX="0.5" OriginY="1.0"> 

  <Scope Width="32" Height="32" Unit="px"> 

    <FillColor Color="purple" /> 

  </Scope> 

</Rotate>

It will render the box rotated around the center bottom point which has the effect of turning the box upside down
(which, in this example is still a purple box...). This begs an interesting question of how could the hidden state of the
children’s size affect the design of Translate, and the answer is to introduce a new unit called ChildSize such that the
following document:



<Translate X="0" Y="-1" Unit="ChildSize"> 

  <Rotate Angle="45" Unit="degree" SizeEffect="keep" OriginX="0.5" OriginY="1.0"> 

    <Scope Width="32" Height="32" Unit="px"> 

      <FillColor Color="purple" /> 

    </Scope> 

  </Rotate> 

</Translate>

can effectively flip over a box and then render the box in the same position.

XML: SCOPING VERSUS DRAWING

Rotation introduces an interesting effect where the drawing of the children may exist outside of the size and relative
position of a box. We also may have interesting documents like this:

<Scope Width="32" Height="32" Unit="px"> 

  <Scope Width="64" Height="64" Unit="px"> 

    <FillColor Color="pink" /> 

  </Scope> 

</Scope>

This definitely feels strange, but it is valid and will render a pink box with dimensions 64x64 pixels. This is where we
can introduce the Clip element.

<Scope Width="32" Height="32" Unit="px"> 

  <Clip> 

    <Scope Width="64" Height="64" Unit="px"> 

      <FillColor Color="pink" /> 

    </Scope> 

  </Clip> 

</Scope>

This Clip element has one job, and that job is to clip the children’s rendering to the parent’s bound. The above example
will clip the children’s rendering according to the inherited bounds, and in this example a pink box will be rendered in
the top left with size of 32x32 pixels. This has the effect of creating a portal into a potentially larger document. For
instance, consider this document now:

<Scope Width="32" Height="32" Unit="px"> 

  <Clip> 

    <Translate X="45" Y="75"> 

      ... Crazy Stuff 

    </Translate> 

  </Clip> 

</Scope>

This starts to demonstrate how the concept of “panning” is an emergent property of the system if the X and Y values of
the above Translate could change. However, this is starting to get ahead of us. Let’s return to the fact that there is a
negotiation of sorts between the parent sending bounds down and the children’s ability to emit its size up based on
the parent’s bounds.

XML: NEGOTIATION BETWEEN THE BOUNDS OF THE PARENT AND CHILDREN



An interesting negotiation emerges between parent’s bounds that flows to the element’s children and what happens
when the children have their own agenda with respect to their size, and this is where
elements Pad, Align, Zoom, Anchor, and AspectRatio will come into play to help sort things out.

Pad has one job, and that is to reduce the bounds coming from the parent to the children and then increase the
bounds the children emits. Consider this example:

<Pad Left="5" Right="5" Top="5" Bottom="5" Unit="px"> 

  <Scope Width="90" Height="90" Unit="px"> 

    <FillColor Color="teal" /> 

  </Scope> 

</Pad>

This document will render a teal box 90x90 pixels with an invisible border of 5px all around. The visual effect of this
document is equal to the teal box being translated by the vector (5,5), but the size the Pad element is 100x100 pixels.
A similar document:

<Pad Left="10" Right="10" Top="10" Bottom="10" Unit="px"> 

  <FillColor Color="teal" />   

</Pad>

Will render a teal box with bounds 590x790 offset by the vector (5, 50) yet the size of the Pad is 600x800.

Align has the job to align the edges between the parent and children as best as possible.

Zoom has the job to fit the children into the parent’s bound.

Anchor has the job to constrain the distance between the parent’s edges and the child edges.

AspectRatio has the job to adapt the parent’s bounds to conform to the given aspect ratio.

XML: AUTOLAYOUT FOR EASY MATH

At this point, we have a great number of capabilities for explicitly putting elements in specific and exacting places, but
how can we be a bit more lazy. For instance, how do I stitch things together? This is where we can introduce the
concept of AutoLayout which is then fed by AutoTranslate. After, laying out a variety of elements is really a question

<AutoLayout Name="Foo" LayoutMode="LeftToRight" NextMode?="Center"> 

  <AutoTranslate Join="Foo"> 

    <Scope Width="90" Height="90" Unit="px"> 

      <FillColor Color="red" /> 

    </Scope> 

  </AutoTranslate> 

  <AutoTranslate Join="Foo"> 

    <Scope Width="90" Height="90" Unit="px"> 

      <FillColor Color="green" /> 

    </Scope> 

  </AutoTranslate> 

  <AutoTranslate Join="Foo"> 

    <Scope Width="90" Height="90" Unit="px"> 

      <FillColor Color="blue" /> 

    </Scope> 



  </AutoTranslate>     

</AutoLayout>

XML: THIS IS TOO VERBOSE, MACROS AND FUNCTIONS FOR FUN AND PROFIT

XMacro is an element that is used to simplify the life of developers working with the Scene Tree manually.

Component: Mega Tree

With a basic sense of the Scene Tree and how it attaches to the Mega Tree, we will now lay out the specific semantics of
the Mega Tree.

Outline the types within the mega tree

numeric

string

bool

arrays of objects

objects

Primary mechanism for inward data flow

Tree stability and value references

every value can be held and is expected to be stable

define the subscription mechanism and garbage collected subscription management

●

○

○

○

○

○

●

●

○

●

Component: Reactive Layout & Compute Engine

With the Mega Tree semantics, we now reveal how the Scene Tree can go from a static image to a dynamic engine.
Every single numeric, string, and bool value within the Scene can be backed by an expression.

Component: Scene Tree, Part II - Multiplicity & Decisions

Ideas that require pulling state

ForEach

Repeat

Enter

If

IfNot

●

●

●

●

●

Post Sizing



Component: Raster Main

With Mega Tree being the source of all data flow, we can reason that if the Mega Tree does not change then the scene
does not change. This allows us to change the game loop to a form that becomes exceptionally battery efficient, and
we can further raise the stakes that animation and thrilling experiences can be simplified to further increase battery
efficiency.

A NEW GAME LOOP

A traditional game loop will periodically poll events from the network and input devices, and then dispatch those
events to update the items within the scene. That is, below is a traditional game loop:

while (gameIsAlive) { 

  // are there any updates from input devices or network 

  var events = pollEvents(); 

  // if so, great! dispatch then 

  events.forEach((event) => event.dispatch(sg)); 

  // have the scene update 

  sg.update(); 

  // draw the scene 

  sg.render(display); 

  // sleep for a bit before re-polling 

  sleep(20 /* ms -> 50 fps */); 

}

This works generally well and enables all forms of animation and a bunch of implicit work to happen. However, for
achieving the goal of battery efficiency we must wield the fact that the scene is static if no updates to the Mega Tree
have occurred. This means that we are allowed to simply wait for events to happen. The new game loop in this world is
as follows:

while (gameIsAlive) { 

  // sleep until events are available 

  var events = await genEvents(); 

  // dispatch events 

  events.forEach((event) => event.dispatch(sg)); 

  // did any of the events invalid anything draw 

  if (sg.display_dirty) { 

    // re-render the scene 

    sg.render(display); 

  } 

}

This has many advantages with respect to CPU and GPU resources, but we must be honest that this will cost a great
deal of memory. This is why memory pressure is considered a key metric in the design of how to subscribe to changes
on the Mega Tree, and a reason the subscription model is imprecise because the goal is not to achieve perfection but a
significant reduction in wasted resources by balancing CPU versus memory.

Component: Scene Tree, Part III - Time & Animation



Animation is a nice touch, but it is expensive. We hold that animation should be entirely 

XML: SKIPPABLE ANIMATION

LocalTime

Converge

●

●

ANIMATION INFLUENCES THE GAME LOOP

This influences the game loop

// we prevent the infinite waiting on events 

int nextStepMs = 0; 

while (gameIsAlive) { 

  // sleep until events are available 

  var events = await genEvents(nextStepMs); 

  // dispatch events 

  events.forEach((event) => event.dispatch(sg)); 

  // did any of the events invalid anything draw 

  if (sg.display_dirty) { 

    // re-render the scene 

    nextStepMs = sg.render(display).timeUntilNextRender; 

  } else { 

    // the scene has nothing scheduled, come back in a very long time 

    nextStepMs = 60000;  

  } 

}

Component: Touch Interactions

While many apps benefit from multi-touch interactions, we bias around a single finger design since single finger
designs are accessible by more people. Furthermore, we bias towards simply touching items rather than any gestures.
This is not to say that multi-touch gestures will be forever removed from the platform, but we recognize the inherit
challenges of using them effectively.

Effectively, we will concern ourselves with the first finger touching the screen, tracking that finger, then when that finger
is off screen to evaluate events. The tricky bit is that we must have an agreement between where the finger started and
where the finger ended to convert to an event.

Beyond simple taps, we will also consider what it means to drag the finger.

WHAT HAPPENS DURING RENDERING

Some elements will have the ability to register is box that can be tapped or dragged. There is an interesting question of
whether or not these boxes are indexed per a quad tree, or if a list of tappable items are used. We can reasonable start
with a  list of items that can be tapped, and then index as needed. This will be a more battery effciient approach since
rendering will happen more often than tapping, and we should bias 

Component: Scene Tree, Part IV - Interactivity



We will consider four primary mechanism for local interaction and the finger. The first is Pan which allows the device to
pan (or scroll) the screen on their device. This provides low latency smooth visual effects. The second is the ability to 

Pan

OnTap / Interact (think about it)

LocalTranslate

It should be noted that Dragg\

●

●

●

○

Component: Audio Scheduler

The Audio Scheduler is a simplistic view of audio and primarily provides a simple API to embed audio in the Scene Tree
such that audio can be played in sync with the rendering of the scene. It’s design is primarily to provide two forms of
audio: background music and playing sound effects in response to data changes.

Component: Scene Tree, Part V - Audio

Since my audio experience is limited, I intend to focus on two forms of audio: Simple background music via Music, and
then the ability to trigger a sound effect via Sound

Music

Sound

●

●

<Music source="file.mp3" link="variable" fadeoutms="4000" /> 

 

<Sound source="file.mp3" link="variable" />

Component: Virtual Asset Store

images

fonts

●

●

Component: Scene Tree, Part VI - Images & Text

XML: MORE TO LIFE THAN FILLING COLORS

FillColor is really a demo element that is useful for not introducing too much noise. The core elements for displaying
real things are: Image, NinePatchImage, SubImage, TileImage, and Text

Image

TileImage

NinePatchImage

SubImage

TileImage

●

●

●

●

●

XML: THE IMPORTANCE OF WORDS AND WRITING



Text

Fonts

●

●

Component: Client

What clients gives to server

What server gives to client

●

●

Protocol: Client to Server

client → server

TreeMerge

Events

server → client

TreeMergeAndEventDelete

●

○

○

●

○

Component: Coordinator

story around privacy●

PRIVACY FILTERS

embedding privacy within a tree●

SHARD MANAGEMENT

finding three replicas●

FAILURE MODES

what happens when first replica fails●



Component: Server Chain Link Replica

FAILURE MODES

What happens when prior node fails

What

●

●

Protocol: Server to Server

client → server

WriteEvent

server → client

AckEvent

MergeTreeAndDeleteEvents

●

○

●

○

○

Component: Compute

With the client able to bring to life the data stored durability, we have to outline the mechanics of how to compute
and build product. Previously, we roughly outlined that Compute has the job of converting event(s) into state changes.
Intuitively, this makes sense, but we need to outline the needed language requirements such that the conversion is
reliable and predictable such that failure modes do not ruin our experiences.

CHALLENGES OF THIS MODEL

THE QUEUE CAN’T BE INFINITE

ASYNC/AWAIT ARE VITAL DESIGN ELEMENTS

DATABASE TECHNIQUES



AN ISOLATION MODEL; GRANULARITY IS A KEY IDEA

Language: Adama
Adama is the programming language that powers the compute engine. Adama is a direct descendant of C except it
lacks a heap, encourages global state (for a good reason), and then has a bit of fun with the typing system. Adama is
highly opinionated.

Core Language

IT ALL STARTS WITH ATOMIC TYPES

The Adama languages has the common types of:

boolean: bool

integers: int{8, 16, 32}

unsigned integers: uint{8, 16, 32}

floating point: float, double

●

●

●

●

Adama also has common algebraic data structures like

vector<T>

set<T>

map<D, R>

pair<A, B>

●

●

●

●

Contrasting to other languages, these types are built into the language. Notably absent are strings, and strings are
simply vector<uint8> which has the type alias of string.

STRUCTURES AND SIGNATURES

With the basic types and data container types, we can then combine them into structures

struct YourStruct { 

  bool enabled; 

  int32 cost; 

  string name; 

  map<string, string> properties; 

}

Adama also introduces the concept of a structure signature.

signature HasEnabled { 

  bool enabled; 

}



Signatures provide an implicit and automatic way of writing code against a specification rather than an specific
instance. For instance: an algorithm written against HasEnabled can accept YourStruct implicitly without any work. This
is a type of duck typing.

SPECIAL CONSTANTS

true / false

pi, euler; these are built-in to the language out of respect

empty is a stand-in for empty vector, empty set, empty map; it requires type inference for correct use and there
are explicit forms

empty<map>

empty<vector>

empty<set>

●

●

●

○

○

○

UNARY OPERATIONS

! E

- E

++ E / E ++

-- E / E --

●

●

●

●

BINARY OPERATIONS

+, -

*, /, %

<, <=, ==, >=, >, !=

and, or, xor

bitand, bitor

...

E1 in E2

●

●

●

●

●

●

●

THE CORE CONTROL STRUCTURE

Adama supports traditional C control flow constructs like if/else.

if (true) { 

  true_branch(); 

} else { 

  false_branch(); 

}

or just a basic if statement

if (false) { 

  // dead code 

}

And while loops:



while (true) { 

  statements(); 

}

And basic for loops:

for (int8 k = 0; k < 32; k++) { 

  statements(); 

}

and do/while for kicks and giggles

do { 

  // execute at least once 

} while (false);

and a familiar yet very different switch statements

int k = ...; 

switch (k) { 

  case 4: 

    break; 

  case < 4: 

    break; 

  case > 10: 

    break; 

}

This warrants a discussion. The type of K will induce a variety of different operators. If the type of k is numeric, then
specific values or ranges can be used. This enables greatly flexibility. If the type of k is a structure, then we also enable a
limited form of structural matching

struct S { 

  bool enabled; 

  int k; 

} 

 

S s = ...; 

 

switch (s) 

  case .enabled && .k < 4: 

    break; 

  case .enabled && .k >= 5: 

    break;     

  case !.enabled: 

    break;

Along with a few modern flow constructs like

foreach (V in E) S

if E is a map<D, R>, then V will have the value pair<D, R>

●

○



if E is a set<T>, then V will have the type of T

if E is a set or vector<T>, V will have the type of pair<uint32, T>

foreach (V of E) S

if E is a map<D, R>, then V will value the value of R

if E is a set<T> or vector<T>, then V will have the type of T

○

○

●

○

○

THE LANGUAGE OF DOING STUFF

Adama enables the writing of functions, and here we are going to be exceptional precise in that the function is actually
a side-effect free function like; this is to mirror their definition in mathematics. These functions can only read the inputs
and produce a single output.

function algo(int8 x) -> int16 { 

  return x * x; 

}

Now, this is very... limiting, and the way out of it is to write procedures which can then manipulate the inputs and
return either no type (i.e. void return type) or a single type.

struct S { 

  bool enabled; 

  int8 k; 

} 

 

procedure initialize(S s) { 

  s.enabled = true; 

  s.k = 0; 

}

NOTES ABOUT THE LANGUAGE, SO FAR

The language is a love child from VBA and C. The VBA inspiration is the bifurcation between functions and procedures,
and this will be more clear in the future. A key element of this language is the memory model. There is no intrinsic
malloc or new behavior, and all memory is derived from the containers.

WHAT ABOUT OBJECTS?

Fuck objects, they suck. Seriously, object orientated programming was mostly a mistake.

OK, HOW DO I ALLOCATE STRUCTS?

You don’t

Data Container Language

The basic containers of vector, set, and map are straightforward enough. However, we also have table<T> which opens
up a bunch of interesting stuff. So, let’s define table

struct YourRow { 

  string name; 

  int8 age; 

} 



 

table<YourRow> table;

At this point, yourTable is going to behave exactly like vector<YourRow>. The reason for this is that it is a vector, and
the key difference is tables provide indexing and constraints. For instance, we can extend the table such that the
elements in the table are indexed by name such as

table<YourRow> table : name indexed;

Now, how then is this indexing leveraged? Well, simple; Adama has a built-in and somewhat limited SQL in it.

select name from table where name='Jeff';

this will have a type of iterator<string> which is a generator.

Built-in Giant State Machine

So, in a traditional language, the state backing an application represents the process. This is where Adama takes a very
different approach. Adama treats all the backing state as a document, and the run-time then manages series of
documents.

 

Run-time

Board Game Examples
A GENERIC LOBBY

CARDS AGAINST HUMANITY

DOMINION

BATTLE STAR GALACTICA


